
Rise of the HaCRS:
Augmenting Autonomous Cyber Reasoning Systems with Human Assistance

Yan Shoshitaishvili
Arizona State University

yans@asu.edu

Michael Weissbacher
Northeastern University

mw@ccs.neu.edu

Lukas Dresel
UC Santa Barbara

lukas.dresel@cs.ucsb.edu

Christopher Salls
UC Santa Barbara
salls@cs.ucsb.edu

Ruoyu Wang
UC Santa Barbara
fish@cs.ucsb.edu

Christopher Kruegel
UC Santa Barbara
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara
vigna@cs.ucsb.edu

ABSTRACT
Software permeates every aspect of our world, from our homes to
the infrastructure that provides mission-critical services.

As the size and complexity of software systems increase, the
number and sophistication of software security flaws increase as
well. The analysis of these flaws began as a manual approach, but it
soon became apparent that a manual approach alone cannot scale,
and that tools were necessary to assist human experts in this task,
resulting in a number of techniques and approaches that automated
certain aspects of the vulnerability analysis process.

Recently, DARPA carried out the Cyber Grand Challenge, a
competition among autonomous vulnerability analysis systems
designed to push the tool-assisted human-centered paradigm into
the territory of complete automation, with the hope that, by re-
moving the human factor, the analysis would be able to scale to
new heights. However, when the autonomous systems were pitted
against human experts it became clear that certain tasks, albeit
simple, could not be carried out by an autonomous system, as they
require an understanding of the logic of the application under anal-
ysis.

Based on this observation, we propose a shift in the vulner-
ability analysis paradigm, from tool-assisted human-centered to
human-assisted tool-centered. In this paradigm, the automated sys-
tem orchestrates the vulnerability analysis process, and leverages
humans (with different levels of expertise) to perform well-defined
sub-tasks, whose results are integrated in the analysis. As a result, it
is possible to scale the analysis to a larger number of programs, and,
at the same time, optimize the use of expensive human resources.

In this paper, we detail our design for a human-assisted auto-
mated vulnerability analysis system, describe its implementation
atop an open-sourced autonomous vulnerability analysis system
that participated in the Cyber Grand Challenge, and evaluate and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134069

discuss the significant improvements that non-expert human assis-
tance can offer to automated analysis approaches.

CCS CONCEPTS
• Security and privacy-Usability in security and privacy; •
Security and privacy-Vulnerability scanners;

KEYWORDS
Fuzzing, Human assistance, Cyber Reasoning Systems

1 INTRODUCTION
Software has become dominant and abundant. Software systems
support almost every aspect of our lives, from health care to fi-
nance, from power distribution to entertainment. This growth has
led to an explosion of software bugs and, more importantly, soft-
ware vulnerabilities. Because the exploitation of vulnerabilities can
have catastrophic effects, a substantial amount of effort has been
devoted to discovering these vulnerabilities before they are found
by attackers and exploited in the wild.

Traditionally, vulnerability discovery has been a heavily manual
task. Expert security researchers spend significant time analyzing
software, understanding how it works, and painstakingly sifting
it for bugs. Even though human analysts take advantage of tools
to automate some of the tasks involved in the analysis process,
the amount of software to be analyzed grows at an overwhelming
pace. As this growth reached the scalability limits of manual analy-
sis, the research community has turned its attention to automated
program analysis, with the goal of identifying and fixing software
issues on a large scale. This push has been met with significant
success, culminating thus far in the DARPA Cyber Grand Challenge
(CGC) [34], a cyber-security competition in which seven finalist
teams pitted completely autonomous systems, utilizing automated
program analysis techniques, against each other for almost four
million dollars in prize money.

By removing the human factor from the analysis process, the
competition forced the participants to codify the strategy and or-
chestration tasks that are usually performed by experts, and, at the
same time, it pushed the limits of current vulnerability analysis
techniques to handle larger, more complex problems in an efficient

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

347

https://doi.org/10.1145/3133956.3134069

and resource-aware manner. These systems represented a signifi-
cant step in automated program analysis, automatically identifying
vulnerabilities and developing exploits for 20 of a total of 82 binary
programs developed for the event.

Despite the success of these systems, the underlying approaches
suffer from a number of limitations. These limitations became evi-
dent when some of the CGC autonomous systems participated in a
follow-up vulnerability analysis competition (the DEFCON CTF)
that included human teams. The autonomous systems could not
easily understand the logic underlying certain applications, and, as
a result, they could not easily produce inputs that drive them to
specific (insecure) states. However, when humans could provide
“suggestions” of inputs to the automated analysis process the results
were surprisingly good.

This experience suggested a shift in the current vulnerability anal-
ysis paradigm, from the existing tool-assisted human-centered par-
adigm to a new human-assisted tool-centered paradigm. Systems
that follow this paradigm would be able to leverage humans (with
different level of expertise) for specific well-defined tasks (e.g., tasks
that require an understanding of the application’s underlying logic),
while taking care of orchestrating the overall vulnerability analysis
process.

This shift is somewhat similar to introduction of the assembly
line in manufacturing, which allowed groups of relatively unskilled
workers to produce systems (such as cars) that had, until then,
remained the exclusive domain of specially trained engineers. Con-
ceptually, an assembly line “shaves off” small, easy tasks that can
be carried out by a large group of people, in loose collaboration, to
accomplish a complex goal.

In this paper, we explore the application of this idea to vulnerabil-
ity analysis. More precisely, we develop an approach that leverages
tasklets that can be dispatched to human analysts by an autonomous
program analysis system, such as those used in the Cyber Grand
Challenge, to help it surmount inherent drawbacks of modern pro-
gram analysis techniques (see Figure 1). We explore the question of
howmuch our “program analysis assembly line” empowers humans,
otherwise unskilled in the field, to contribute to program analysis,
and we evaluate the improvement that external human assistance
can bring to the effectiveness of automated vulnerability analysis1.
Our results are significant: by incorporating human assistance into
an open-source Cyber Reasoning System, we were able to boost the
number of identified bugs in our dataset by 55%, from 36 bugs (in
85 binaries) using fully-automated techniques to 56 bugs through
the use of non-expert human assistance.

In summary, this paper makes the following contributions:
• We introduce the design of a human-assisted automated vul-
nerability analysis system, in which the result of well-defined
tasklets that are delegated to human actors are integrated in
the (otherwise) autonomous analysis process. These tasklets
help automated analysis systems to bridge the “semantic gap”
in the analysis of complex applications.
• We implemented a prototype human-assisted autonomous
system on top of Mechanical Phish, a system that partici-
pated in the DARPA Cyber Grand Challenge, which we had

1In the rest of the paper, we refer to “automated vulnerability analysis” as the orches-
tration process, even though it might include tasks that are outsourced to humans.

Figure 1: Tool-assisted Human-centered Analysis vs. Human-
assisted Tool-centered Analysis.

open-sourced after the contest. To support the community
and drive the state of (semi-) automated program analysis
forward, we open-source our modifications to Mechanical
Phish.
• We experimentally evaluated the effectiveness of our tasklets
in aiding the vulnerability analysis process of our system
by leveraging the assistance of unskilled humans, showing
that significant contribution can be made without requiring
expert hackers.

In the next section, we will discuss the background of automated
program analysis and pinpoint the challenges that we hope to solve
with human-analyzed tasklets.

2 BACKGROUND
The field of vulnerability discovery has received a significant amount
of research attention. In this section, we will describe the current
state of the art of both automated and manual vulnerability dis-
covery techniques, show the challenges facing each of them, and
position our approach in the context of related work.

2.1 Fully Automated Analysis
Individual techniques have been developed for identification of
vulnerabilities [7, 12, 29], automatic exploitation [1, 13, 14], and au-
tomatic application protection [24, 35, 36]. However, until recently,
researchers did not focus on the integration of various techniques
into cohesive end-to-end systems. Over the last two years, DARPA
hosted the Cyber Grand Challenge which required contestants
to develop Cyber Reasoning Systems (CRSes). These are fully au-
tonomous machines capable of identifying, exploiting, and patching
vulnerabilities in binary code.

A Cyber Reasoning System represents the culmination of years
of research into automated binary analysis. However, being fully
autonomous, CRSes suffer from the limitations of their under-
lying techniques. These limitations were reflected in the Cyber
Grand Challenge results, in which only 20 out of the 87 vulner-
able challenges were successfully exploited by the machine con-
tenders [8, 27].

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

348

2.2 Human-based Computation
While the assembly line pioneered the idea of splitting complex
physical tasks (such as the assembly of a car) into small, manage-
able micro-tasks as early as the 12th century [6], the intellectual
equivalent was not explored until modern times. This concept was
most popularized with the Manhattan Project, in which specific
computation micro-tasks were assigned to and carried out by hu-
man “computers” [17]. With the emergence of modern computing
capability, these micro-tasks came to be chiefly carried out by ma-
chines. As computers developed to the point where they could
oversee such efforts, a formal specification of the different roles
that humans and computer components can take on in computation
emerged [18, 19, 25]. This specification defines three roles:

Organization Agent. The organization agent is the overall intelli-
gence. It tracks the progress of work toward an overarching
goal, determines what should be done, and creates micro-
tasks. In the Manhattan Project, the organization agent was
the panel of scientists leading the research effort.

Innovation Agent. The innovation agent is the entity responsible
for carrying out micro-tasks defined by the organization
agent. In the Manhattan Project, the innovation agents were
the human “computers” solving computation tasks.

Selection Agent. The selection agent collates the results produced
by the innovation agents and determines which are valid.
In the Manhattan Project, this task was performed by the
scientists leading the effort.

Systems are described using three letters, depending on whether
a human or computer agent is responsible for each role. For example,
an HCH designation would imply a system with a human deciding
which tasks to execute, a computer executing them, and the human
deciding which of the results are useful. In a security context, this
might be the human specifying jobs to a symbolic execution engine,
and then analyzing its output to identify exploitable bugs in a piece
of software.

Over the last few years, the Internet has achieved enough satu-
ration to support complex combinations of human and computer
agents. For example, Amazon’sMechanical Turk provides anAPI for
automatically specifying micro-tasks for human consumption [2],
usually used in a CHC context. In fact, we use Mechanical Turk
for many of our experiments in this paper. In a similar vein to
Mechanical Turk, specific-purpose platforms have been created to
leverage human effort in the pursuit of a single overarching goal.
One such platform, Galaxy Zoo [37], utilizes human-completed
micro-tasks for the classification of astronomical images, while an-
other, Foldit [11], aids protein folding algorithms by having humans
play “folding games.”

2.3 Human-Driven Automated Analysis
Because it is important to understand the interactions between
manual and automated processes in binary analysis systems, we
provide a few examples of their intersections outside of the context
of our work.

Fuzzing. Generational fuzzers, such as Peach [16], attempt to
create inputs conforming to a specification that a program is de-
signed to process. Mutational fuzzers, such as AFL [38], mutate
previously-known inputs to identify program flaws.

The most common way of creating these inputs and input speci-
fications is manually, through human effort. This results in an HCH
system – a human creates the input specification, the computer
performs the fuzzing, and a human analyzes the results.

An example of successful human-computer cooperation in bi-
nary analysis is the discovery of the Stagefright vulnerability in
the Android multimedia library. This vulnerability was found by
repeating the following steps [10]:
Organization - H. The analyst seeds a mutational fuzzer (in this

case, AFL), and starts it.
Innovation - C. The fuzzer identifies vulnerabilities in the target

application (in this case, the Android multimedia library).
Selection - H. The human collects the vulnerabilities and fixes

them so that future iterations of the full system will identify
deeper vulnerabilities.

By repeating this HCH process, the analyst was able to identify
many high-impact vulnerabilities inside the Android multimedia
library, requiring multiple patches and an eventual rewrite of the
entire library to fix [30].

2.4 Human-Assisted Automated Analysis
The Cyber Grand Challenge required a fully autonomous system
(CCC, by the definitions in Section 2.2). This necessitated the devel-
opment, by participating teams, of complex automation to handle
the organizational, innovation, and selection roles. However, we
propose that while the organizational and selection roles must be
automated to achieve high scalability, some human effort can still be
used in the innovation role to mitigate drawbacks currently impact-
ing automated program analysis techniques. That is, our intuition
is that it is possible to create a Human-assisted Cyber Reasoning
System (HaCRS) that would sparingly use human assistance to
improve its performance.

HaCRS provides a principled framework for such an integration
of manual and automated analysis. It can be modeled as a C(C|H)C
system: it does most of its work fully autonomously, but relies
on human intuition in the innovation phase, when the automated
processes get “stuck.” In this paper, we propose that limited human
assistance can be used in the scope of otherwise-automated binary
analysis systems.

Of course, leveraging humans for tasks that are otherwise dif-
ficult to automate is a well-explored field. Research in the field of
human-computer interaction (HCI) has been focusing on effectively
engaging human labor into computer systems to solve hard prob-
lems, like labeling images [31], locating objects in images [32], and
recognizing characters in images [33]. One way to raise the moti-
vation of human participants is through gamification, which has
been adopted in security for human-assisted verification [9, 20, 22].
However, the scalability of these techniques and systems are strictly
limited by the number of participants of the game, since none of
them integrates the output of human users into an autonomous
system. One exception has been explored in the context of gener-
ating inputs for Android applications, but this concept has never

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

349

been investigated in the context of an otherwise-autonomous Cyber
Reasoning System [23].

HaCRS takes a different route: It treats its humans as optional
assistants, and injects their output into an autonomous cyber rea-
soning system to improve an already-scalable and fully automated
solution. In the next section, we will give an overview of our system,
followed by in-depth details and an evaluation of its improvement
over fully-autonomous systems from the Cyber Grand Challenge.

3 OVERVIEW
While DARPA’s Cyber Grand Challenge drove the integration of
cutting edge automated binary analysis techniques, it also revealed
the many limitations of these techniques. Our work on HaCRS
extends the concept of a Cyber Reasoning System by defining a
method for human interaction that compensates for many of these
limitations. Primarily, HaCRS is an autonomous Cyber Reasoning
System. However, when it identifies situations that can benefit
from human analysis, HaCRS dispatches self-contained tasklets and
assigns them to human assistants. These human assistants can vary
in skill, from abundant low-skill analysts to rare high-skill hackers.

Our HaCRS can dispatch a variety of tasklets to human assis-
tants, depending on changing requirements. Generally, each tasklet
includes a specific program that must be analyzed and a request for
specific information that the human can extract from this program.
These tasklets are created by a centralized orchestration component
and disseminated to the assistant through a Human-Automation
Link (HAL). In this paper, as an initial exploration of this idea, we
focus on human-assisted input generation, leaving the exploration
of other tasklets to future work.

The Cyber Reasoning System. HaCRS is based on Mechanical
Phish, an open-source Cyber Reasoning System that was
created by Shellphish, the hacking team of the SecLab of UC
Santa Barbara, and competed in the DARPA Cyber Grand
Challenge [26, 27]. Shellphish designed Mechanical Phish
as a set of discrete components, providing individual anal-
ysis tasks, united by a central component that handles the
“overarching intelligence” [27]. Thismakes it straightforward
(though, unfortunately, non-trivial) to extend Mechanical
Phish with other analysis techniques, such as tasklet dis-
patching.
To the interested reader, we describe the relevant design
details of Mechanical Phish in Section 4.

Human-Automation Link. We extend Mechanical Phish to re-
quest assistance, from non-expert humans, in principled
ways.
The prototype action that we explore in this paper is input
generation. In input generation, input test cases are created
through both automated and human-assisted techniques to
form a base set of test cases to use in vulnerability discov-
ery. We describe this task, the conveyance of task-specific
information in a human-friendly format, and the use of the
results in our Human-assisted Cyber Reasoning System in
Section 5.

Next, we will discuss relevant details of Mechanical Phish before
delving into the details of our tasklets. After this, we will evaluate

human performance in the execution of these tasklets against au-
tomated alternatives derived from the state-of-the-art in program
analysis.

4 THE CYBER REASONING SYSTEM
We based our implementation on the Mechanical Phish, the Cy-
ber Reasoning System developed for the Cyber Grand Challenge
and open-sourced by our team (Shellphish) [26]. While Mechani-
cal Phish is composed of modules that are spread over more than
30 different source code repositories, the core design is (or attempts
to be) fairly straightforward [26].

In this section, we will describe Mechanical Phish in terms of
the computation framework discussed in Section 2.2. First, we will
discuss the type of software that Mechanical Phish is designed to
analyze. Then, we split the existing design into the Organization
Agent, Innovation Agent, and Selection Agent, as defined in Sec-
tion 2. Afterwards, in the next section, we will detail our extensions
on top of Mechanical Phish, and the specific points at which we
insert human interaction.

4.1 Program Analysis Targets
Mechanical Phish was built for participation in the Cyber Grand
Challenge. The Cyber Grand Challenge used a custom operating
system, DECREE, to ease the implementation load on participants.
To simplify analysis tasks, DECREE supports software written with
a text-based interface, using seven system calls, roughly equivalent
to the Linux system calls exit, write, read, select, mmap, munmap,
and getrandom.

Aside from this simplified environment, DECREE places no re-
strictions on the complexity of the software itself. As such, ap-
plications written for the Cyber Grand Challenge vary widely in
complexity, from text-based video games to “Computer-aided de-
sign“ software to web servers, and provide significant challenges
to the current state-of-the-art in program analysis. Additionally, it
is important to stress that all analysis done by HaCRS takes place
on binaries, and thus functions without the semantic hints present
in source code.

4.2 Organization Agents
TheMechanical Phish is a state-less Cyber Reasoning System, where,
for each decision, all of the information available to Mechani-
cal Phish, such as the binaries to be analyzed and the currently-
available results of analysis components, is re-analyzed from scratch.
This was done in an attempt to reduce the complexity of the orga-
nizational components by freeing them from the requirement of
tracking their own prior decisions [26].

Mechanical Phish includes several organizational components:
Task Creator. The task creator analyzes currently available re-

sults and identifies tasks that should be created, and their
priorities. This component is actually a conglomeration of
individual, task-specific creators. Each task-specific creator
schedules its own tasks without input from other creators:
the only interaction between the creators of different tasks
happens when results of those tasks influence the current set
of analysis results (and, in turn, are used by the subsequent
tasks created by these creators).

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

350

Task Scheduler. Each task is assigned a priority by its creator. The
task scheduler analyzes task priorities and available system
resources and determines which tasks to schedule.

Environment Interaction. In order to inject data into Mechani-
cal Phish, and submit the results, interaction with the envi-
ronment is required. This component handles the retrieval of
input into and exposure of output out of the system. While
in the CGC this interaction was very straightforward, Cyber
Reasoning Systems operating in other environments (for ex-
ample, in a real-world cyber warfare situation) might require
considerably complex agents for this task.

The first task that the system must carry out is the integration of
environment information (for example, which binaries are available
for analysis), after which the Innovation and Selection Agents can
run.

4.3 Selection Agents
The selection agents are responsible for the integration of the re-
sults that are produced by the innovation agents. However, the
Mechanical Phish does not make a distinction between the innova-
tion agents and the integration agents in most cases, though there
are several exceptions:

Vulnerability triaging. When crashes are identified by the vul-
nerability discovery component, they are triaged to deter-
mine the feasibility of transforming them into exploits. This
information is then used by the Task Creator to prioritize
exploitation tasks based on the crash.

Exploit selection. The exploits created by the ExploitationAgents
are checked against different variations of the target binaries
to verify that, for example, opponent systems did not patch
the vulnerability. Successful exploits are entered into the
database, to be submitted by the Environment Interaction
Agent.

Patch selection. Mechanical Phish implements a simple patch
selection criteria, preferring patches produced by advanced
(but more failure-prone) techniques over simple (but higher-
overhead) ones.

The results of these agents are used by the organizational com-
ponents to schedule further innovation tasks.

4.4 Innovation Agents
The tasks that are created and scheduled by theOrganizationAgents
are carried out by the innovation agents. Specifically, Mechanical
Phish includes the following agents:

Vulnerability discovery. Mechanical Phish uses a combination
of fuzzing and symbolic execution to analyze target bina-
ries. These are implemented as separate agents that interact
through cross-pollination of dynamic test cases. Specifically,
as proposed by Driller, a coverage-based fuzzer is used in
parallel with a symbolic tracing technique to produce inputs
that maximize code coverage [29].

Exploitation. Several different exploitation agents are used by
Mechanical Phish, depending on the types of vulnerabilities
that are discovered.

Patching. Mechanical Phish uses a complex patching agent, in
several different configurations, to patch the vulnerabilities
that it identifies in binary code.

These innovation agents process inputs and produce updates
to the system state. These updates are filtered through selection
agents before the system state accepts them.

4.5 Automated Vulnerability Discovery -
Fuzzing

The fuzzing approach in the Mechanical Phish is based on a muta-
tional fuzzer known as American Fuzzy Lop [38]. This approach
requires, as input, a set of test cases that exercise some functionality
in the target binary. The seed quality, in terms of how well they
exercise the target program, has a scaling effect on the effectiveness
of AFL: the more coverage these test cases provide, the more code
AFL will be able to explore by mutating them. Unfortunately, the
creation of high-quality test case seeds is a complicated problem,
and this is generally seen as a human-provided input into a system.
For example, lacking human input, Mechanical Phish simply seeds
its fuzzer with an input comprised of the word “fuzz.”

These seeds are then mutated to explore more and more of the
code base and increase the chance of triggering bugs. Eventually,
however, the fuzzer will get stuck and be unable to exercise new
paths through the code of the target program. This can happen for
a number of reasons, but is most frequently caused by the inability
of the fuzzer’s random mutations to satisfy complex conditions,
introduced by checks in the program, upon input data.

4.6 Automated Vulnerability Discovery -
Drilling

Driller proposed a mitigation for the stalling of the fuzzer due to the
inability to satisfy complex solutions [29]. It uses concolic execution
to trace the paths that the fuzzer finds, identifies conditional checks
that the fuzzer fails to satisfy, and synthesizes inputs to satisfy
these conditions. Driller triggers its operation when the fuzzer
gets “stuck”, and is unable to find further test cases (it detects this
by checking AFL’s progress evaluation heuristics). Once this stall
condition is detected, Driller symbolically traces and attempts to
mutate all test cases that AFL has found into test cases that reach
parts of code not previously seen. These resulting test cases are
then synchronized back into the fuzzer, so that it can explore newly-
reached areas of code.

By pairing fuzzing with concolic execution, Driller achieves
better results than the naive union of the individual underlying
techniques. However, Driller’s automated approach to symbolic
input synthesis has some drawbacks.

Driller’s synthesis works by diverting a path and forcing it to
satisfy a check that it would have otherwise avoided. There are
several limitations, inherent in Driller, that hamper its effectiveness
in certain situations. These include, but are not limited to:

SMT solver. Driller uses an SMT solver to solve negated path pred-
icates (constraints on the input values to the program that
must be satisfied in order to trigger the path in question) to
synthesize inputs that diverge from the original execution.

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

351

However, depending on the complexity of the path predi-
cates involved, the SMT solving process may not terminate.
While this represents a significant challenge for Driller, the
complexity of these predicates might not translate to the
complexity of interaction with the software. If this is the
case, a human assistant might be able to controllably di-
vert the path taken through the program, even when the
constraint solver cannot.

Inflexible path predicates. Depending on implementation de-
tails in the program, earlier path predicates might prevent
the deviation of later path predicates. Such predicates are
frequently created by certain input transformation proce-
dures. For example, string-to-int translation (such as the
atoi function) takes different conditional branches, based
on the values in the input string, while converting an input
string to an integer. These conditional branches create path
predicates. Later, the program might perform some action
based on the value of this integer. When Driller attempts to
divert this decision to take a different action, the earlier path
predicates on the input string prevent this diversion.
Humans, of course, do not share this inflexible way of rea-
soning about path predicates.

Semantic transitions versus control flow transitions. Driller
cannot understand the program semantically, and simply at-
tempts to deviate the control flow of the program. A human,
on the other hand, can identify much more intricate semantic
deviations (for example, winning, as opposed to losing, a
game), allowing for the triggering of whole new areas of
code to deal with these new semantic settings.

These limitations conspire to erode Driller’s ability to produce
deviating inputs in many cases. In the next section, we will dis-
cuss how these limitations can be worked around with human
assistance.

5 HUMAN ASSISTANCE
As we discuss in the previous section, automated input synthesis
techniques suffer from limitations that cause them to eventually get
stuck in the exploration of a program. Even Driller, which leverages
the power of symbolic execution to divert test cases, is only a
partial solution. This is because, while Driller can make major
changes to the input test case it analyzes, it can only (by design
and fundamental limitation) achieve minor deviations.

On the other hand, a human can leverage intuition and a se-
mantic understanding of the target program to achieve very large
deviations, potentially allowing further analyses to continue to
make progress. In this paper, we explore the integration of human
assistance into a Cyber Reasoning System as Innovation agents,
keeping the Organizational and Selectional agents fully automated.
We focus on the vulnerability discovery stage of the analysis and
explore ways to integrate human effort to improve analysis effi-
ciency.

Human assistance takes place over an interface (the Human-
Automation Link, or HAL) which will be described later this section.
To maximize the effectiveness of this effort, HaCRS carries out a
number of analyses that enhance the data it is able to expose to
the humans. In this section, we describe how human assistants are

Concept Computer Expert Non-Expert
Symbolic Equations ✓
Control-Flow Graph ✓ ✓
Execution Path ✓ ✓
I/O (Text) ✓ ✓ ✓
Semantic Meaning ✓ ✓

Table 1: Program analysis concepts, as they are easily understood
by automated techniques, expert humans, and non-expert humans.
To be understandable to non-experts, the Human-Automation Link
must avoid complex program analysis topics.

selected, the interface overwhichHaCRS and humans communicate,
and how the resulting data is used to enhance the vulnerability
detection ability of HaCRS.

5.1 Assistant Expertise
The style of human assistance differs according to the assistant’s
expertise level. For example, while HaCRS could reasonably ask an
expert human to analyze a control flow graph and identify potential
paths through it, a non-expert would be flabbergasted by such a
request. The information presented, and the interfaces which are
used, must be adapted to the chosen assistant’s level of expertise.

Since expert humans (i.e., binary analysts) are rare and expensive,
the integration of assistance from non-expert humans (i.e., an aver-
age internet citizen) is of particular interest. While they do not scale
to the extent of automated processes, non-expert humans scale con-
siderably easier than experts, due to their higher availability. When
more knowledge is required, semi-experts (i.e., graduate students
in Computer Science) can be leveraged more readily than experts.
Thus, in this paper, we focus mainly on techniques to integrate
non-expert assistance, with a detour into semi-expert assistants for
completion.

Over the decades that humans have been interacting with soft-
ware, the skill of performing such interaction has become gradually
instilled in the human population. As such, even non-experts are
well-trained to understand and drive computer software. Thus, we
can tailor HAL to non-experts by sticking to concepts that they can
grasp and avoiding complex program analysis concepts, as shown
in Table 1. For example, rather than “triggering transitions”, we
used the term “triggering functionality”, which requires less techni-
cal knowledge to understand. Additionally, we expose non-experts
only to the input and output log associated with prior interactions
with the programs that the HaCRS is trying to analyze, and avoid
any use of program analysis terms in task descriptions.

5.2 Human-assisted Input Generation
HaCRS uses human assistance to break through the “semantic bar-
riers” that limit the effectiveness of automated analyses described
in Sections 4.5 and 4.6. It gives its human assistants a goal: generate
an input test case that executes some amount of code in the tar-
get program that has not been reached by previously-known test
cases (i.e., those previously found by automated analyses or other
humans).

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

352

Human assistants interact with the target program to generate
test cases, and these test cases are synchronized throughout HaCRS’
components.
Human-to-automation. Human-produced test cases are synchro-

nized to the automated program exploration components,
which proceed to mutate them in an attempt to trigger new
functionality.

Human-to-human. Humans can view and modify the test cases
produced by other human assistants. This enables a collec-
tive effort of the understanding and leveraging of program
semantics toward a higher code coverage.

Automation-to-human. The resulting automation-mutated test
cases can then be shown to the human assistants (we term
such a test case an “example test case”), who can review them,
understand possible further improvements and changes that
can be made, and relay those changes back to the automation
by producing human-modified test cases.

Test case conversion. The synchronization of test cases from au-
tomated components to a human assistant poses a challenge: auto-
mated systems, driven by either random input generation or input
synthesis via constraint solving, have no guarantee to produce
printable characters when the target program does not require
it. Non-printable test cases look like gibberish when shown to a
human, which hinders the human’s ability to reason semantically
about what actions the test case is causing the target program to
take.

To address this issue, we use the existing afl-tmin utility shipped
with AFL [38]. This utility is a test case minimizer. It takes an input
test case and uses lightweight dynamic techniques to a) remove
unnecessary input characters and b) convert as many characters
as possible to be printable, without changing the code coverage
achieved by the input. In practice, it achieves very good results on
programs with a text interface.

5.3 Automation-assisted Human Assistance
Simply presenting previously-discovered test cases to human assis-
tants enables an improvement over a base-case Cyber Reasoning
System (we show this in Section 6). However, since the communi-
cation between HaCRS and humans takes place over a well-defined
interface, HaCRS can provide extra information and capabilities to
enhance the humans’ abilities to complete the assistance task.

Interaction assistance. One such capability provided by HaCRS
is the automated re-formatting of input data. HaCRS traces each
program test case to detect if input data must be provided in a
specific format. It achieves this by leveraging existing techniques
in protocol recovery [4, 5, 21]. Depending on configuration (and
expertise of human assistants), this information can either be pre-
sented to the human assistants or utilized automatically to mutate
human-created inputs into a format understood by the application.

In our prototype, we mainly utilize these techniques to automat-
ically recover non-standard field delimiters used by the binaries
in our dataset, but they can also be used to support information
packing protocols, such as ASN1.

High-level guidance. Having enabled human interaction for bi-
naries with complex input data specifications, HaCRS turns to the

question of maximizing the ability of its humans to understand how
to interact with the target program. It does this by identifying and
categorizing constant string references in the binary.

HaCRS identifies static string references by analyzing its CFG,
and performs a static data flow analysis to categorizes these into
strings produced as output by the program and strings compared
against user input into the program. HaCRS identifies output strings
by detecting when they are passed into common output functions
(such as puts and printf). Input strings are considered to be any-
thing that is passed to a string comparison function. In the case of
statically-linked binaries, HaCRS can leverage the function identifi-
cation functionality built into the Mechanical Phish, which detects
common functions in programs using pre-defined dynamic test-
cases [27]).

HaCRS provides a list of potential output strings in the target pro-
gram to help its human assistants, relaying which of these strings
have not yet been triggered (i.e., caused to be output by the program)
by other test cases. These can provide useful semantic information
regarding the untapped functionality of the target program.

While HaCRS focuses on text-based software, it is important
to keep in mind that analogous information can be recovered for
software with a graphical user interface. For example, a similar
analysis can identify GUI widgets, render them, and display them
as potential directions of exploration for human assistants.

Symbolic tokens. First, HaCRS creates suggestions for human
assistants for ways that test cases might be modified to divert pro-
gram flow. This is done through a process of symbolic tokenization.
HaCRS symbolically traces the target program in the context of
each test case to recover constraints placed on the input by the
target program. It analyzes these constraints to identify contiguous
bytes on which the constraints are similar (in terms of the number
of constraint expressions and the types of arithmetic and Boolean
operations the constraint expressions are composed of). These con-
tiguous bytes represent tokens processed and reasoned about by
the binary.

HaCRS then identifies alternate values for each symbolic token.
It rewinds its symbolic trace to the address at which the first con-
straint of the token was introduced, discards symbolic inputs on
the state, and performs a symbolic from that point to retrieve other
potential values. The symbolic exploration runs until a timeout (we
found 30 seconds to be a reasonable timeout in our experiments).
At the end of the timeout, the constraints of the various resulting
paths are solved to alternate values for the token. These values are
further refined by matching them against the input strings retrieved
previously, and HaCRS produces two different sets of suggestions
to its assistants: “educated guesses”, which are the input strings that
are prefix-matched by the recovered alternatives and “brute-force
guesses”, which are the raw alternatives themselves.

Note that, while the concept of generating alternatives for input
is shared with Driller, the goal is different. Driller generates alter-
native test cases to drive execution down different paths. However,
the alternatives generated by this method are meant to be learned
by humans, understood, and reasoned about to produce new inputs
through human intuition and previously-learned experience. In
some simple cases (like the example in Figure 2), the symbolic to-
kens generated by HaCRS can directly be synchronized into Driller

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

353

as an end-to-end test case without the need for human assistance.
When this holds, it is implicitly handled by the automation. Since
the token recovery process discards path constraints and symboli-
cally explores from the introduction location of the first constraint
on that token, it loses coherence in other input bytes, as keeping
them coherent will (for the exact reasons discussed in Section 4.6)
hamper token recovery. Thus, symbolic tokens are generally not di-
rectly usable as test-cases, and instead act as inspiration for human
assistants.

Input type annotation. Programs process different inputs differ-
ently, and HaCRS exposes this to its assistants by highlighting input
bytes that are constrained by similar constraints (as with the sym-
bolic token analysis, we use constraint count and operation types to
compute constraint similarity). Input bytes highlighted with similar
colors in the input test cases will be bytes that have been treated
similarly to each other by the program, and may represent similar
type of data. Most importantly, this differentiates string input (such
as a command) against numeric input (which is passed to functions
such as atoi, which impose specific constraints on the data).

5.4 Human-Automation Link
The interface between the HaCRS and its human assistants must be
designed in such a way as to be understandable by both parties. To
do this, we created a Human-Automation Link (HAL) that exposes,
to the humans, only the concepts of program analysis that non-
experts might be familiar with. For the curious reader, we reproduce
a mock-up of the HAL interface in Figure 2.

The HAL interface in Figure 2 consists of the following elements:

Program description. When a description of the target program
is available, it can aid assistants in interacting with it. In
the case of Cyber Grand Challenge binaries, this description
includes a very brief (usually four to five sentences) summary
of the program’s purpose, as written by the program authors.
In a real-world setting, human assistants can be provided
with the technical manual for the piece of software being
tested.

Tasklet instructions. The HaCRS provides human-readable in-
structions, which are presented to the assistant alongside
each tasklet.

Example interactions. The HaCRS provides logs of previous in-
teractions with the software, in the form of input and output
data. For the text-based software of DECREE OS, to help
assistants understand what data was originated from them
(program input) and what came from the program (program
output), the input and output are displayed in different col-
ors. A version of HaCRS for software with a graphical user
interface could instead have a video record of the interaction,
but this is not supported by our prototype.

CRS-Generated Suggestions. To help assistants understand how
to deviate from a test case, they can invoke the deviation
annotation interface. This interface displays data recovered
through the automated analyses described in Section 5.3 to
present the assistant with a better idea of how to make a
program behave differently than in the example test case.

Interaction terminal. To facilitate the interaction between hu-
man assistants and the target program, a terminal is pre-
sented to interact with the software. Again, to help assistants
understand differentiate user input from program output,
the input and output are displayed in different colors.

Tasklet goal and feedback. Any human-facing task must have
an understandable end goal to avoid confusion on the part of
the assistants. HaCRS requires its human assistants to trigger
previously-unseen functionality in the target programs. To
this end, it provides feedback to the assistant regarding the
amount of previously-unseen control flow transitions that
the assistant was able to trigger.
Along with this, it provides a display of untriggered output
strings, as described in Section 5.3. With their human ability
to reason about semantic information, assistants can leverage
the bounty strings to better target untriggered functionality
in the program.

Each tasklet also has a timeout and an abort button: if the assis-
tant is unable to complete the tasklet before a timeout, or presses
the abort button, the tasklet is terminated. This acts as a guard
against the situation when the tasklet is not actually completable
(for example, if the remaining untriggered functionality is dead
code).

In the next section, we will explore the implication of human
assistance by evaluating the performance of HaCRS against the
performance of the unaided Mechanical Phish.

6 EVALUATION
In this section, we evaluate the impact of our integration of non-
expert human effort into the Cyber Reasoning System paradigm.
We measure the result of this as a whole, in terms of the overall
number of vulnerabilities identified in our dataset, but also explore
certain low-level details of the system.

6.1 Dataset
As previously mentioned, Mechanical Phish was designed to oper-
ate on binaries for DECREE, the operating system designed for the
DARPA Cyber Grand Challenge. A total of 250 binaries were pro-
duced by DARPA for the Cyber Grand Challenge2. These binaries
vary in complexity, but are designed to mimic a wide range of vul-
nerabilities and behaviors found in real-world software. Each Cyber
Grand Challenge binary is guaranteed to have at least one vulnera-
bility, and proof-of-concept exploits, along with high-quality test
cases, are provided for each. This makes it possible to measure,
with some degree of certainty (after all, previously-unknown vul-
nerabilities might also be present), the effectiveness of vulnerability
detection techniques. As such, they have already been used in the
evaluation of various other scientific work [28, 29, 35].

Filtering. Our dataset is the subset of DECREE programs that
present a human-usable text protocol or for which the interaction
assistance provided by HaCRS (as discussed in Section 5.3) was able
to facilitate a human-usable text protocol. We selected these by
automatically detecting the presence of non-printable characters

2DARPA recently funded the creation of a human-readable repository with information
on these applications, hosted at http://www.lungetech.com/cgc-corpus.

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

354

Tasklet Instructions
- Program Description

- Tasklet Directions

Example Interactions

1 2 3 4 5 6 7

PAPER> PAPER
TIE
ROCK> SCISSORS
YOU LOSE

Feedback

Score: 223/1225

MINIMUM GOAL MET!
Bonuses:
- 10 more functions
- Output "INVALID"
✔ Output "YOU WIN!!!"
✔ Output "EASTEREGG!!"

Terminal

PAPER> 0000
EASTER EGG!!!
PAPER> SCISSORS
YOU WIN!!!

CRS-Generated
Suggestions

Educated Guesses:

- ROCK
- SCISSORS
- LIZARD
- SPOCK

Brute Force:

- ~~~!@
- 0000

Figure 2: A diagram of the HaCRS user interface. Tasklet instruc-
tions were presented to the assistants, who could preview sample
interactions (discovered by prior assistants or by the driller compo-
nent) and use the terminal to create new test cases. The HaCRS pro-
vides symbolic tokens (the dash-bordered interface widget) to help
guide the human intuition of its assistants and presents specific
goals to motivate them.

in the author-provided test cases (we did not otherwise use these
test cases in the experiments). We filtered binaries in this way
because, to our human assistants, such protocols are understandable,
and, therefore, they allow for manual interaction. Among the CGC
binaries, a total of 85 binaries meet this criterion.

While this requirement to filter the dataset to binaries designed
for human interaction is limiting, certain approaches do exist to
alleviate it. For example, IARPA funded a multi-year effort, dubbed
STONESOUP [15] that developed a number of approaches to gamify
software. Such approaches can be used to expand the amount of
binaries with which humans can assist, but they generally fail

to recreate the valuable semantic hints in software designed for
humans. We leave the integration of such program mutation into
our interaction assistance component as future work.

Classification. Even though a protocol might be text only, it
might still be hard for humans to understand. As an example of this,
consider PDF, which is a text-only file format that is designed to
be parsed exclusively by computer programs. To better understand
the implications of human assistance on the binaries in our dataset,
we manually categorized them according to the following qualities:

Technical expertise. We determined whether a program requires
technical expertise to be used. For example, some of the pro-
grams in the dataset are language interpreters or databases,
requiring users to be familiar with such Computer Science
concepts as programming languages. These programs would
be rated as requiring high technical expertise.

Semantic complexity. We attempted to identify whether actions
taken by the program yield themselves to high-level rea-
soning about the program’s intent. For example, a move
taken in a chess match would have high semantic complex-
ity, whereas an iteration of a compression algorithm would
not. Thus, a chess engine would be ranked as having high
semantic complexity, whereas a compression utility would
not.

CGC binaries are fairly small, and the small size of these binaries
makes them well-suited for such classification. Specifically, because
the binaries tend to be “single-purpose” (i.e., a recipe storage ap-
plication, as opposed to a web browser), most binaries do not have
different modules with different semantic complexity or technical
expertise requirements.

The binaries, by their various classifications, are presented in
Table 3. Classifications were done by one researcher, before exper-
iments were performed (except for binaries used during system
development). For borderline cases of semantic complexity, we erred
on the side of marking binaries as complex. For borderline cases of
required expertise, we erred on "requiring expertise". Our reasoning
for the classification of various binaries is provided alongside the
classifications. Admittedly, this process is subjective. One way to
address this is by having the assistants themselves rate programs by
semantic and technical complexity. However, as this classification
is not a core part of the system but instead a lens through which
to understand its effectiveness on this specific dataset, we felt that
such an undertaking would be outside of the scope of this paper.

We expect human assistants to do best on binaries with a high
semantic complexity, and unskilled humans to do best with binaries
requiring a low technical expertise.

6.2 Human Assistants
HaCRS was designed to support different levels of assistant exper-
tise, from non-experts to experts. We evaluated the impact of both
non-expert and semi-expert assistants.

Non-experts. For the non-experts, we used Amazon’s Mechani-
cal Turk service to dispatch tasklets to humans with no required
Computer Science knowledge [2]. This provided HaCRS with an
API to interact with human intelligence in a scalable way, allowing

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

355

it to submit tasklets, as Mechanical Turk Human Intelligence Tasks
(HITs), without concerning itself with human availability.

Because we had finite funds for our experiments, we imple-
mented a human interaction cache. When the HaCRS would create
tasklets for non-expert human assistance, we would first check the
interaction cache to determine if this human assistance task had
already been requested in by a prior experiment. If it had, and if at
least one of the cached human test cases “solved” the tasklet (in the
sense of triggering new code), the HaCRS would reuse it instead of
paying for a HIT. We used the human interaction cache whenever
we were running experiments on identical configurations of the
Hardware-Automation Link. This allowed us to re-run some of the
experiments throughout the design and development of the system
and remain within our budget.

We filtered turkers by success rate (>95%), resulting in 183 turk-
ers solving 802 tasklets at costs between 1and4, scaling with the
"age" of the program in the system, plus a bonus of 2 cents per
extra percentage of discovered edges. Turkers demonstrated a "long
tail" of performance. Our star turker completed 67 tasklets over
48 binaries and contributing to 28 assisted crashes, 8 of which au-
tomation alone didn’t find, versus an average of 4.5 tasklets (across
1.8 binaries) per worker, contributing to 0.3 assisted crashes, 0.1 of
which automation did not find.

Each assistant was presentedwith the tasklet instructions and the
HAL interface. In the end, between the different experiments to fully
understand our system, we spent about $1,100 on Mechanical Turk
HITs, resulting in 21268 unique test cases across our experiment3.
While this is a large amount for a research lab, it would be trivial
spending for a nation state or large corporation looking to augment
their analysis capabilities.

Semi-experts. We recruited five professionals in Computer Sci-
ence, familiar with programming topics but not with program anal-
ysis or security, to act as our semi-expert human assistants. These
professionals interacted with a random sampling of 23 binaries
from our dataset, generating a total of 115 test cases.

6.3 Human-Automation Link
Aswe proposed a number of optimizations to theHuman-Automation
Link in Section 5.3, it is important to understand whether this actu-
ally enhances the effectiveness of human assistances. To determine
this, we performed two separate experiments in having non-experts
interact with programs in the HAL, with our optimizations in Sec-
tion 5.3 disabled in the first and enabled in the second.

For each binary, we dispatched tasklets to the human assistants
until they were unable to make further progress in code coverage,
given an hour-long timeout. We collated the results by the semantic
complexity of the binaries involved, and computed the median
number of test cases at which progress stopped being made.

Our improvements to the HAL allowed our assistants to con-
tribute a significantly higher amount of test cases than they were
previously able to. For semantically complex binaries, the number
of test cases was roughly double, but for binaries that were not

3A preprint of this paper stated $2,000 as the cost. Amazon Mechanical Turk collects
the full payment for all scheduled HITs up front, and refunds it at a later date if HITs are
not completed. Confusion with the Mechanical Turk interface caused us to mistakenly
leave out the refunded portion in our calculations, resulting in the higher figure.

semantically complex, the improvement was considerably higher,
approach a three-fold increase in the number of successful test case
generations. On further investigation, this makes sense – analyzing
the test cases generated by the human assistants, we were able to
see them quickly guess how to interact with semantically-complex
programs, but struggle with less complex ones. However, with the
improved HAL interface, they were given extra information that
they could leverage to provide high-quality test cases.

6.4 Comparative Evaluation
HaCRS improves the vulnerability detection process by injecting
human intuition into the Cyber Reasoning System. To understand
how effective this is, we analyze the impact that non-expert and
semi-expert assistance has on CRS effectiveness. To explore these
questions, we ran several different experiment configurations:
Non-expert humans. As a baseline to understand the ability of

humans to generate inputs for binary code, we disabled the
automated components of the Mechanical Phish and relied
solely on human assistants for test case creation.

Semi-expert and non-expert humans. With the amount of semi-
experts at our disposal, it did not make sense to have them
work alone. As such, we ran an integrated semi- and non-
expert experiment. To understand the impact of expertise,
we added the semi-experts to our assistant pool and reran
the human-only experiment. Test cases produced by non-
experts are presented to semi-experts as examples, and test
cases created by the semi-experts are synchronized into the
system and eventually presented to the non-experts.

Unassisted fuzzing (AFL). This configuration, with both sym-
bolic and human assistance disabled, achieves a baseline for
comparing the other experiments to understand the relative
gains in code coverage and crashes.

Symbolic-assisted fuzzing (Driller). This is the reference con-
figuration of the Mechanical Phish: a fuzzer aided by a dy-
namic symbolic execution engine, as proposed by Driller. We
consider this as the prior state-of-the-art configuration.

Human-assisted fuzzing. In this configuration, Driller is replaced
with our Human-Automation Link. Rather than symbolically
tracing fuzzer-generated test cases, we present them to our
human assistants and synchronize their test cases back into
the fuzzer. This configuration, together with the Driller and
AFL configurations, allow us to understand the relative ef-
fectiveness of Drilling versus Human Assistance.

Human-assisted Symbolic-assisted fuzzing. This is the “com-
plete” configuration of HaCRS, all components, representing
the new state-of-the-art in Cyber Reasoning System.

We ran each configuration for 8 hours, giving the fuzzer 4 pro-
cessor cores, with 2 additional cores for Driller. The results of the
experiment are presented in Table 2.

End-to-end system. The most obvious result is the improvement
in the number of vulnerabilities that were identified with the full
HaCRS configuration. By iteratively combining human assistance
and symbolic assistance to its internal fuzzer, the HaCRS was able
to identify an additional twenty bugs in different binaries over
symbolically-assisted fuzzing (a whopping 55% improvement) and
twice as much as the base-case fuzzer alone. This result is significant:

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

356

Configuration
Semantic
Complex-
ity

Expertise
Required

Median
Code
Coverage

Median
#AT

Median
#HT

Binaries
Crashed

Median
Time-to-
Crash

Non-expert Humans High Low 46.68% 0 137 0 N/A
High High 48.83% 0 150 0 N/A
Low Low 48.69% 0 168 0 N/A
Low High 16.81% 0 297 0 N/A

Total 47.19% 0 151 0 N/A
All Humans High Low 46.83% 0 137 0 N/A

High High 48.83% 0 150 1 2815
Low Low 48.69% 0 168 0 N/A
Low High 17.39% 0 298 0 N/A

Total 47.19% 0 151 1 2815
Unassisted Fuzzing High Low 41.82% 410 0 12 807

High High 43.32% 526 0 14 1278
Low Low 56.17% 187 0 1 143
Low High 17.46% 211 0 1 7

Total 42.87% 361 0 28 897
Symbolic-assisted Fuzzing High Low 42.90% 663 0 14 1302

High High 48.85% 764 0 17 1426
Low Low 56.07% 156 0 2 62
Low High 41.88% 1500 0 3 390

Total 44.91% 649 0 36 1298
Human-assisted Fuzzing High Low 49.70% 326 136 21 1378

High High 60.45% 472 126 24 1442
Low Low 64.03% 125 35 2 48
Low High 17.46% 207 9 1 10

Total 52.38% 308 84 48 1334
Human-assisted Symbolic- High Low 48.98% 369 69 23 1140
assisted Fuzzing High High 59.68% 485 11 28 1855

Low Low 64.03% 121 46 2 47
Low High 48.52% 641 5 3 584

Total 53.45% 403 34 56 1301
Table 2: The crashes found and code coverage achieved by different configurations of the automated and human components of HaCRS. The
full HaCRS configuration includes human non-expert, human semi-expert, and automated innovation agents. #AT, and #HT are the numbers
of automation-originated test cases and human-originated test cases, respectively, that were deemed “unique” by the Mechanical Phish’s test
case evaluation criteria.

non-expert humans, overwhelmingly likely to have no security
or program analysis training, are able to make real contributions
toward the analysis of binary software.

We analyzed the impact of the fuzzer, Driller, and human assis-
tance on code coverage metrics and the amount of test cases for
the binaries that only HaCRS was able to crash in our experiment.
This is presented in Figure 3. Unsurprisingly, all of these binaries
are ones that we classified as having high semantic complexity. For
most of them, HaCRS achieves significantly higher code coverage,
but there are several interesting exceptions where the code cov-
erage achieved by HaCRS is very close to or even lower than the
other techniques, despite it triggering a crash where other methods
failed. Our investigation into this phenomena revealed that this is
a function of humans triggering the same (or a subset) of the code
that the automation does, but doing so in a different configuration
more correct (or appropriately incorrect) for the program being
tested. Later in this section, we discuss one such case, NRFIN_00005,

where automation managed to trigger all of the functionality but it
took human intuition to trigger it correctly for a crash.

Comparison to Driller. In HaCRS, human assistants take on a
very similar role to Driller: they provide extra inputs that the fuzzer
can leverage to avoid stalling in its exploration of the target pro-
gram. Rather than making small control-flow diversions, human
assistants make semantic divergences based on their understand-
ing of the operation of the target program. This is reflected in the
results – for semantically-complex programs, the human assistants
significantly beat out Driller, achieving an improvement of up to
11.6% improvement in coverage. However, for binaries that did not
have semantic complexity but required computing expertise, the
human assistants suffered, being unable to understand the concepts
presented by the program and intuit how to interact with it. This is
where the combination of human and automated analysis shines
– Driller picks up the slack in these binaries, and the combination

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

357

Figure 3: The binaries in which crashes were only found in the human-assisted configuration of the CRS. The number of unique (in terms of
code coverage) test cases is shown in the top chart (with a logarithmic scale), and the achieved code coverage is shown in the bottom chart.
The results are split into what was found by just the fuzzer alone, by including Driller, and with the addition of human assistance.

of human and symbolic assistance achieves higher code coverage
than either alone.

Impact of expertise. Interestingly, the inclusion of semi-experts
in our analysis did not seriously impact the achieved code coverage.
This is an example of the different scale achievable for experts and
semi-experts. While we were able to get 183 Mechanical Turk work-
ers to assist HaCRS, we were only able to recruit five professionals,
and they could not make a strong impact on the results (in fact,
because the results are presented in aggregate, there was almost
no impact on the median measurements). However, they did have
localized success: due to their ability to intelligently interact with
more complex binaries, the experts were able to identify a bug in
one of the applications without any automation at all. Specifically,
they triggered a bug in CROMU_00021, which implements a simple
variable storage and arithmetic engine, but contains an exploitable
bug when a variable with a blank name is created.

6.5 Case Studies
In the course of our experiments, our human assistants achieved
some results that are interesting to explore more in-depth. This

was despite the fact that the human assistants were completely
unskilled in program analysis, and were recruited with absolutely
no training. Here, we delve deeper into these bugs, and discuss why
human effort helped with these specific binaries.

Coverage case study: CROMU_00008. This binary implements a
database with a SQL-inspired interaction interface. Proper use of
this binary required understanding the concepts of storing and
retrieving data records. Interestingly, our human assistants quickly
developed an understanding for how to do this, taking the sug-
gested keywords from the CRS suggestions and combining them
into expressions the program understood. They achieved a code
coverage of 55.5%, compared with 12.1% for the automated analy-
ses. Manual investigation into the delta between automation and
human assistance revealed that, as expected, the humans produced
inputs that were meaningful for the program, while the symbolic
seed synthesis attempted to optimize for code coverage, triggering
many meaningless states (such as incorrect commands) without
ever getting to the actual operation of the program.

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

358

Coverage case study: KPRCA_00052. This binary is surprisingly
complicated: the assistant is presented with a pizza order menu
system. To properly navigate this system, the analysis engine must
understand how a pizza is made: the crust is chosen first, then the
cheese, then the toppings. This makes it very hard for the automated
system to explore this binary and, in fact, our automation achieved
a 19% code coverage over the course of the experiment, as opposed
to 52% achieved by human assistants.

Vulnerability-detection case study: NRFIN_00005. This binary im-
plements a Tic-Tac-Toe game where the human player plays against
the computer. It is made harder by only displaying the moves and
hiding the game board. A null pointer dereference bug can be trig-
gered and the program is crashed by playing at least one round and
then type “START OVER” to start a new game at the menu. Other
options like “PLAY AGAIN” do not trigger any crash immediately.

During the game play, this binary provides a clear indication
of what the format of the input should be. We observed that our
assistants strictly followed the expected input format and won the
first round quite fast, and then typed “PLAY AGAIN” to start a new
game. HaCRS then mutated up one of the round-winning input,
replaced “PLAY AGAIN” with “START OVER”, and triggered the
crash immediately. In comparison, neither AFL nor Driller could
win a single round of the game: They could not generate input that
satisfies the format requirement for sufficient number of times, and
consequently they never crashed this binary.

Vulnerability-detection case study: KPRCA_00028. This binary
implements a command line interpreter for expressions from an
imaginary programming language called SLUR. Built-in functions
include quote, cons, equal, lambda, etc., can be used inside SLUR
expressions. A typical SLUR expression looks like the following:
(quote e), or ((lambda (v1 v2) e) e1 e2). A null pointer dereference
vulnerability exists in the lambda function.

Although this program does not provide any hint of what build-
in functions there are and what form user input should have, we
noticed that our assistants were able capture function names from
the symbolic tokens in the guidance that HaCRS provided. Addition-
ally, our assistants were able to correctly determine the legitimate
format of SLUR expressions, and manually constructed expressions
using different built-in functions that are accepted by the binary.
With the help of input from our assistants, HaCRS was able to build
several long SLUR expressions including one or more lambda sub-
expressions that triggered the crash. We scrutinized the input that
AFL (without human assistance) used, and realized that it was un-
able to generate an expression in the correct form, which explains
why it could not crash this binary.

7 DISCUSSION
In this section, we discuss implications of the Rise of the HaCRS.
Specifically, we talk about the importance of our step of integrating
human effort into Cyber Reasoning Systems (and specifically, non-
expert human effort), take-aways from our evaluation, and future
steps.

7.1 Human Obsolescence
As with most examples of human-dependent technique, we expect
that the “intuition” that human assistants provide for HaCRS will
eventually be replaced by automated techniques. However, it is
not currently clear what shape such an analysis would take. While
carrying out the tasklets that HaCRS requested help with, humans
do not necessarily reason about code coverage (even though it
is used as a goal metric), but rather about the exploration of an
abstract state space of program, in a way that current automated
techniques do not consider.

When automated techniques are developed that can reproduce
this slice of human intuition, we expect that humans will be made
redundant, similar to the relentless advance of automation in as-
sembly lines. For now, however, it seems that we are still quite
relevant, even in the simplified Cyber Grand Challenge dataset.

7.2 Assistant Skill Levels
Interestingly, judging from feedback emails sent to us when our
human assistants experienced technical issues, more technically-
minded assistants tended to get frustrated and quit faster. This may
have been due to us attempting to simplify our assistant instruc-
tions. Combined with the relatively unimpressive performance of
the semi-experts, this implies that more research is needed into
presenting a correct abstraction for different skill levels, and that
the non-expert interface does not necessarily scale up to expert
users.

Of course, software testing specialists are quite well trained for
this sort of thing – they excel at identifying corner cases in software
despite being “semi-experts” in program analysis. Our future direc-
tion is the principled reintroduction of expertise into the process,
with the appropriate interface support, to better understand how
much of the system is impacted just by expertise-independent hu-
man “intuition” and how much is impacted by human experience,
but perhaps hampered by the current “simplified” interface.

Given a pool of abundant non-experts, adequate amounts of
such semi-experts, and a constrained number experts, HaCRS could
strategically distribute different tasks, with interfaces of varying
difficulty level, to its host of assistants. There are many open ques-
tions as to the best way to facilitate this interaction – should experts
inject inputs like non-experts do, or should they function at a lower
level of program paths and symbolic constraints? Once such vari-
able levels of assistance are supported, the HaCRS will have to be
taught to reason about a budget, in terms of the available human
talent, available time, and available money to pay its assistants.
This requires the potential integration of complex game theory
and approach planning algorithms, which are currently relatively
unexplored in the realm of Cyber Reasoning Systems.

7.3 Incentive Structures
Because Amazon Mechanical Turk is designed for quick tasks with
instant payoff, we settled on the incentive model of paying assis-
tants for triggering a pre-set amount of transitions in the program.
However, this ignores, to some extent, the humans’ effect on down-
stream automated analysis. Basically, not all transitions are created
equal, and some lead to more interesting mutations than others.
Thus, it would be interesting to explore an incentive structure in

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

359

which assistants are rewarded based on how much code coverage
is achieved by any test cases derived from their tasklet solutions,
not just the coverage of the solutions themselves. This could allow
assistants to more carefully budget their time across different pro-
grams, as well: an assistant could put a small amount of time into
program Pa , move on to Pb , and check at a later time if his inputs
to Pa resulted in increased code coverage from the automation, and
provide more assistance as needed.

These sorts of improved incentive structures, that allow the
human to use the automation as an assistant at the same time as
the automation uses the human as an assistant, may bring the two
sides closer toward creating a hybrid “centaur” system.

7.4 Other Tasklets
Thus far, we have integrated human assistance into the test case
creation pipeline of the Mechanical Phish. However, the HaCRS
concept can be applied to other aspects of a CRS:

Test case selection. The stalling-out of the fuzzer, which HaCRS
addresses by providing human-assisted test cases, represents
only one side of the limitations of fuzzing-based vulnerability
discovery techniques. On the other end of the spectrum is the
“input explosion” that can occurwhen the fuzzer identifies too
many test cases, overwhelming the evolutionary algorithm.
Of course, automated techniques, such as AFLFast [3], have
been developed in an attempt to help with the selection of
test cases in this situation. However, the fact that human
assistants augment a CRS even in the presence of techniques
such as Driller suggests that exploring the use of human
assistance for test case selection, in addition to generation,
could be a promising direction of research.

Exploitation. Even though the Mechanical Phish exploited more
challenges during the Cyber Grand Challenge than any of its
opponents, it still had almost an 80% failure rate in convert-
ing a crash to an exploit. In many cases, this was because
the specific way in which it triggered a crash did not pro-
vide it with enough control over the program’s memory.
Crashing test cases that the CRS fails to exploit could be
dispatched to expert human assistants for “post-processing”,
and these assistants could modify the test-cases to achieve
more control of the state, allowing the CRS to weaponize
otherwise-unexploitable crashes.

Patching. One of the limitations of the Mechanical Phish is its in-
ability to create precise patches for software, due to a lack of
root cause analysis of vulnerabilities. This limitation forces
the Mechanical Phish to exclusively adopt costly general
patches that patch large swaths of code that are not vul-
nerable. Integrating human effort into the patch evaluation
process, specifically by having experts (or maybe, with a
carefully-designed interface, semi-experts) participate in the
root-cause analysis of identified crashes and the evaluation
of potential fixes, could significantly improve the effective-
ness of this component of the Mechanical Phish.

High-level planning. Likewise, human assistance can be lever-
aged in the planning process – for example, during the Cyber
Grand Challenge, it was not always a good idea to patch a
vulnerability (in fact, the Mechanical Phish lost its chance

at victory because it patched too many vulnerabilities [27]).
An ability to integrate human advice into the system would
go a long way to alleviating current limitations in the ability
of the Mechanical Phish to properly respond to changing
strategic situations.

We plan to explore some of these applications in our future work
in this field.

8 CONCLUSION
The use of principled human-assistance in Cyber Reasoning Sys-
tems constitutes a paradigm shift in our view of how binary anal-
ysis is done. Instead of the dichotomy between human-led, semi-
automated systems (HCH, as discussed in Section 2) and fully auto-
mated systems (CCC), we propose a C(H|C)C system, where com-
puters, which scale beyond human ability, make organizational calls
and humans, whose intuition has not yet been replicated, assist
when able. This system can utilize the insight of non-expert humans,
who are more abundant than expert humans and thus scale better.
In the absence of these humans, these systems are able to operate
fully autonomously, just at a lower effectiveness.

In this paper, we have taken a first look at how non-experts
impact the automated vulnerability discovery pipeline. The results
are significant: humans, with no security training, were able to
seriously improve the bug detection rate of a state-of-the-art vul-
nerability analysis engine. Further exploration is warranted. For
example, humans can confirm or repudiate results of static analysis,
combine behavior observed in different test cases into one, and help
verify automatically-generated patches. All of this is challenging or
simply infeasible with modern techniques, but the use of human as-
sistance can greatly augment Cyber Reasoning Systems with these
capabilities regardless.

ACKNOWLEDGMENTS
This work would not have existed without the amazing attitude
of the Shellphish CTF and CGC team, and owe our team-mates
enormous debts of gratitude for their support and brilliance over
the years. We would also like to thank our many, many workers on
Amazon Mechanical Turk, along with our amazing semi-expert vol-
unteers: Xingcheng Chen, Tao Du, Tao Zhan, and two anonymous
graduate students.

This material is based on research sponsored by the National
Science Foundation under award numbers CNS-1704253 and DGE-
1623246, by DARPA under agreement number FA8750-15-2-0084,
and by the Office of Naval Research under grant number N00014-
15-1-2948. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

REFERENCES
[1] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Maver-

ick Woo, and David Brumley. 2014. Automatic Exploit Generation. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS).

[2] Jeff Barr and Luis Felipe Cabrera. 2006. AI gets a brain. Queue 4, 4 (2006).

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

360

[3] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1032–1043.

[4] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. 2009.
Dispatcher: Enabling Active Botnet Infiltration UsingAutomatic Protocol Reverse-
engineering. In Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS).

[5] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Polyglot: Auto-
matic Extraction of Protocol Message Format Using Dynamic Binary Analysis.
In Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

[6] Rondo E Cameron. 1993. A Concise Economic History of the World: From Paleolithic
Times to the Present. Oxford University Press, USA.

[7] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proceedings of the IEEE Symposium on
Security and Privacy.

[8] DARPA. 2016. CFE File Archive. (2016). http://repo.cybergrandchallenge.com/
cfe/.

[9] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Nathaniel Mote, Brian Walker,
Seth Cooper, Timothy Pavlik, and Zoran Popović. 2012. Verification Games:
Making Verification Fun. In Proceedings of the 14thWorkshop on Formal Techniques
for Java-like Programs. 42–49. https://doi.org/10.1145/2318202.2318210

[10] Joshua Drake. 2015. Stagefright - Blackhat 2015 Slides. (2015).
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-
Scary-Code-In-The-Heart-Of-Android.pdf.

[11] Christopher B Eiben, Justin B Siegel, Jacob B Bale, Seth Cooper, Firas Khatib,
BettyW Shen, Barry L Stoddard, Zoran Popovic, and David Baker. 2012. Increased
Diels-Alderase Activity through Backbone Remodeling Guided by Foldit Players.
Nature biotechnology 30, 2 (2012).

[12] Patrice Godefroid, Michael Y Levin, and David AMolnar. 2008. AutomatedWhite-
box Fuzz Testing. In Proceedings of the Symposium on Network and Distributed
System Security (NDSS).

[13] Sean Heelan. 2009. Automatic Generation of Control Flow Hijacking Exploits for
Software Vulnerabilities. Ph.D. Dissertation. University of Oxford.

[14] Shih-KunHuang, Min-Hsiang Huang, Po-Yen Huang, Chung-Wei Lai, Han-Lin Lu,
andWai-Meng Leong. 2012. Crax: Software Crash Analysis for Automatic Exploit
Generation by Modeling Attacks as Symbolic Continuations. In Proceedings of
the IEEE International Conference on Software Security and Reliability (SERE).

[15] IARPA. 2010. STONESOUP Program. (2010). https://www.iarpa.gov/index.php/
research-programs/stonesoup.

[16] Peach Inc. 2013. Peach Fuzzer: Discover unknown vulnerabilities. (2013). http:
//peachfuzzer.com.

[17] Sam Kean. 2010. The Disappearing Spoon: And Other True Tales of Madness, Love,
and the History of the World from the Periodic Table of the Elements. Little, Brown
and Company.

[18] Alexander Kosoruko. 2000. Social Classification Structures: Optimal Decision
Making in an Organization. Late breaking papers of GECCO (2000), 175–178.

[19] Alex Kosorukoff. 2001. Human based genetic algorithm. In Systems, Man, and
Cybernetics, 2001 IEEE International Conference on, Vol. 5.

[20] Wenchao Li, Sanjit a Seshia, and Somesh Jha. 2012. CrowdMine: Towards Crowd-
sourced Human-Assisted Verification. In Proceedings of the 49th Annual Design Au-
tomation Conference. ACM, 1254–1255. https://doi.org/10.1145/2228360.2228590

[21] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. 2008. Automatic
Protocol Format Reverse Engineering through Context-Aware Monitored Execu-
tion. In Proceedings of the Symposium on Network and Distributed System Security

(NDSS).
[22] Heather Logas, Jim Whitehead, Michael Mateas, Richard Vallejos, Lauren Scott,

Dan Shapiro, John Murray, Kate Compton, Joseph Osborn, Orlando Salvatore,
Zhongpeng Lin, Michael Shavlovsky, Daniel Cetina, Shayne Clementi, and Chris
Lewis. 2014. Software Verification Games: Designing Xylem, The Code of Plants.
In Proceedings of the 9th International Conference on the Foundations of Digital
Games (FDG). Society for the Advancement of the Science of Digital Games,
Liberty of the Seas, Caribbean.

[23] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An In-
put Generation System for Android Apps. In Proceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering (FSE).

[24] Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, et al. 2009. Automatically Patching Errors in Deployed Software.
In Proceedings of the ACM SIGOPS Symposium on Operating systems principles.

[25] Dafna Shahaf and Eyal Amir. 2007. Towards a Theory of AI Completeness. In
AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[26] Shellphish. 2016. Shellphish - The Cyber Grand Challenge. (2016). http:
//shellphish.net/cgc.

[27] Shellphish. 2017. Cyber Grand Shellphish. (2017).
http://phrack.org/papers/cyber_grand_shellphish.html.

[28] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. SOK:(State of) The Art of War: Offensive Techniques in Binary
Analysis. In Proceedings of the IEEE Symposium on Security and Privacy.

[29] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of the Symposium on Network and Distributed System Security (NDSS).

[30] The Verge. 2016. Google rebuilt a core part of Android to kill the Stagefright
vulnerability for good. (2016). http://www.theverge.com/2016/9/6/12816386/
android-nougat-stagefright-security-update-mediaserver.

[31] Luis Von Ahn and Laura Dabbish. 2004. Labeling Images with a Computer Game.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 319–326.

[32] Luis Von Ahn, Ruoran Liu, and Manuel Blum. 2006. Peekaboom: A Game for
Locating Objects in Images. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 55–64.

[33] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel
Blum. 2008. reCAPTCHA: Human-Based Character Recognition via Web Security
Measures. Science 321, 5895 (2008), 1465–1468.

[34] Mike Walker. 2016. The DARPA Cyber Grand Challenge. https://
www.cybergrandchallenge.com/. (2016).

[35] Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2017. Ramblr: Making Reassembly Great Again. In Proceedings of the Symposium
on Network and Distributed System Security (NDSS).

[36] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling.
In Proceedings of the USENIX Security Symposium.

[37] Kyle W Willett, Chris J Lintott, Steven P Bamford, Karen L Masters, Brooke D
Simmons, Kevin RV Casteels, Edward M Edmondson, Lucy F Fortson, Sugata
Kaviraj, William C Keel, et al. 2013. Galaxy Zoo 2: detailed morphological
classifications for 304,122 galaxies from the Sloan Digital Sky Survey. Monthly
Notices of the Royal Astronomical Society (2013).

[38] Michal Zalewski. 2014. American Fuzzy Lop. (2014). http://lcamtuf .coredump.cx/
afl/.

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

361

http://repo.cybergrandchallenge.com/cfe/
http://repo.cybergrandchallenge.com/cfe/
https://doi.org/10.1145/2318202.2318210
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.iarpa.gov/index.php/research-programs/stonesoup
https://www.iarpa.gov/index.php/research-programs/stonesoup
http://peachfuzzer.com
http://peachfuzzer.com
https://doi.org/10.1145/2228360.2228590
http://shellphish.net/cgc
http://shellphish.net/cgc
http://phrack.org/papers/cyber_grand_shellphish.html
http://www.theverge.com/2016/9/6/12816386/android-nougat-stagefright-security-update-mediaserver
http://www.theverge.com/2016/9/6/12816386/android-nougat-stagefright-security-update-mediaserver
https://www.cybergrandchallenge.com/
https://www.cybergrandchallenge.com/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Binary Semantic Complexity Technical Complexity Reasoning
CADET_00001 High Low Palindrome detection. Fully usable by unskilled users. ASCII protocol.
CADET_00003 High Low Palindrome detection. Fully usable by unskilled users. ASCII protocol.
CROMU_00001 High Low Messaging application, menu driven. ASCII protocol.
CROMU_00003 High Low Fingerd service, menu driven. ASCII protocol.
CROMU_00005 High Low Game vaguely based on chess allows for human intuition. ASCII protocol.
CROMU_00017 High Low Equation solver, menu driven. ASCII protocol.
CROMU_00019 High Low Text-based game. ASCII protocol.
CROMU_00029 High Low Temperature simulation, menu driven, simple usability. ASCII protocol.
CROMU_00031 High Low Game vaguely based on chess allows for human intuition. ASCII protocol.
CROMU_00037 High Low Messaging application, menu driven. ASCII protocol.
CROMU_00040 High Low Recipe Management, rich with semantic information. ASCII protocol.
CROMU_00041 High Low Simple e-mail program, easy to exercise. ASCII protocol.
CROMU_00044 High Low Messaging application, menu driven. ASCII protocol.
CROMU_00046 High Low Text-based game, easy to understand. ASCII protocol.
CROMU_00054 High Low ECM and TCM simulation, menu driven. ASCII protocol.
CROMU_00065 High Low Black jack game allows for human intuition, menu driven. ASCII protocol.
CROMU_00076 High Low Text-based game, easy to understand. ASCII protocol.
CROMU_00087 High Low Recipe management, rich with semantic information. ASCII protocol.
EAGLE_00005 High Low Hangman-style text-based game allows for human intuition. ASCII protocol.
KPRCA_00011 High Low Movie rental simulation, menu driven. ASCII protocol.
KPRCA_00017 High Low Hangman-style text-based game allows for human intuition. ASCII protocol.
KPRCA_00018 High Low Gambling simulation, allows for human intuition. ASCII protocol.
KPRCA_00022 High Low Online job application simulation, allows for human intuition. ASCII protocol.
KPRCA_00023 High Low Online job application simulation, allows for human intuition. ASCII protocol.
KPRCA_00026 High Low Memo auto-correction service, menu driven. ASCII protocol.
KPRCA_00030 High Low Game vaguely based on Game of Life, allows for human intuition. ASCII protocol.
KPRCA_00042 High Low Movie rental simulation, menu driven. ASCII protocol.
KPRCA_00043 High Low Lyrics submission service, allows for human intuition. ASCII protocol.
KPRCA_00049 High Low Note taking service, interaction described in documentation. ASCII protocol.
KPRCA_00051 High Low Class scheduling service, menu driven. ASCII protocol.
KPRCA_00052 High Low Pizza ordering simulation, allows for human intuition. ASCII protocol.
KPRCA_00053 High Low Text-based social network simulation, allows for human intuition. ASCII protocol.
KPRCA_00055 High Low Matrix calculation service, allows for human intuition. ASCII protocol.
KPRCA_00071 High Low Collection of online games, easy to play. ASCII protocol.
KPRCA_00079 High Low Space Invaders based game, easy to play. ASCII protocol.
NRFIN_00004 High Low Chat bot service, allows for human intuition. ASCII protocol.
NRFIN_00005+ High Low Text-based game based on Tic-Tac-Toe, allows for human intuition. ASCII protocol.
NRFIN_00065 High Low Computer game collection, allows for human intuition. ASCII protocol.
TNETS_00002 High Low Virtual pet management, navigation not described in README but users can explore. ASCII protocol.
YAN01_00001 High Low Game based on Ships, allows for human intuition. ASCII protocol.
CROMU_00002 High High Particle simulator, limited interaction for humans possible. ASCII protocol.
CROMU_00008 High High Database system similar to SQL, allows for human intuition. ASCII protocol.
CROMU_00009 High High Online file system and shell, allows for human intuition. ASCII protocol.
CROMU_00010 High High Online route calculation and map upload. ASCII protocol.
CROMU_00011 High High Online set operations, commands may be unclear, limited interaction possible. ASCII protocol.
CROMU_00014 High High Diver logging, menu driven, clear command hints, allows for human intuition. ASCII protocol.
CROMU_00015 High High Markup language parser, menu driven, language syntax is complex but allows for some interaction. ASCII protocol.
CROMU_00021 High High Integer calculator using RPN, allows for human intuition. ASCII protocol.
CROMU_00022 High High Diver logging, menu driven, clear command hints, allows for human intuition. ASCII protocol.
CROMU_00023 High High Diver logging, menu driven, clear command hints, allows for human intuition. ASCII protocol.
CROMU_00035 High High Online file system, menu driven, allows for human intuition. ASCII protocol.
CROMU_00042 High High Combination of sort, arithmetics, and a game. Menu driven, allows for human intuition. ASCII protocol.
CROMU_00048 High High Water treatment facility simulator, very verbose, semantic information. ASCII protocol.
CROMU_00051 High High Busybox inspired shell environment, verbose. ASCII protocol.
CROMU_00071 High High Online flight planning tool, allows for human intuition. ASCII protocol.
CROMU_00083 High High Online file system, interactive menu. ASCII protocol.
CROMU_00096 High High Text-based interactive shell. Single character commands are guessable for humans. ASCII protocol.
CROMU_00098 High High Sendmail inspired email server, allows for human intuition. ASCII protocol.
KPRCA_00007 High High Simulated router interface, little feedback, some interaction possible with no documentation. ASCII protocol.
KPRCA_00013 High High Spreadsheet calculator, familiarity for humans plus descriptive instructions. ASCII protocol.
KPRCA_00021 High High Import and pretty print of JSON based format. Little documentation, limited interaction possible. ASCII protocol.
KPRCA_00028 High High LISP-like evaluation engine, little documentation but usable error feedback that can lead to better input. ASCII protocol.
KPRCA_00031 High High Chat bot service using hidden markov chains. Sample commands available in documentation. ASCII protocol.
KPRCA_00036 High High String matching service, verbose clues. ASCII protocol.
KPRCA_00041 High High File comparison service, verbose clues. ASCII protocol.
KPRCA_00045 High High Template engine, clues via responses. ASCII protocol.
KPRCA_00054 High High Shell, documentation plus help menu. ASCII protocol.
KPRCA_00068 High High Audio importing and editing service, menu is verbose. ASCII protocol.
LUNGE_00002 High High FAR section lookup service, hard to understand without documentation, some interaction possible. ASCII protocol.
NRFIN_00001+ High High SNMP inspired service, verbose menu, allows for human intuition. ASCII protocol.
NRFIN_00009+ High High Music store client, limited documentation and feedback, basic exploration possible. ASCII protocol.
NRFIN_00054 High High Path tracing service, easily navigable, verbose menu instructions. ASCII protocol.
NRFIN_00055 High High Integer calculator, limited documentation, commands can be explored intuitively. ASCII protocol.
YAN01_00002 High High Tennis Ball Motion Calculator, little documentation, limited interaction possible. ASCII protocol.
YAN01_00007 High High Password wallet, little documentation, limited interaction possible. ASCII protocol.
YAN01_00011 High High Word completion game, verbose clues, allows for human intuition. ASCII protocol.
CROMU_00025* Low High Image uploading service using custom file formats, binary data.
CROMU_00030* Low High Game requiring specific format that is described in README. ASCII protocol.
CROMU_00034* Low High File storage for specifically formatted files. Format is described in README.
KPRCA_00010* Low High File storage and processing of PCM data format. Basic interaction requires no knowledge of the format.
KPRCA_00064* Low High Secure compression service. Basic interaction (menu) requires no knowledge of the format.
NRFIN_00008* Low Low ASCII video streaming with video upload. ASCII protocol.
NRFIN_00064 Low Low Text-based game, the grid is not displayed to the user, increasing difficulty but still navigable. ASCII protocol.
NRFIN_00069+ Low Low Text-based game, the grid is not displayed to the user, increasing difficulty but still navigable. ASCII protocol.
YAN01_00015 Low Low Text-based game with fixed hardcoded responses that need to be given. ASCII protocol.

Table 3: The binaries in our dataset, grouped by semantic complexity of their operation and the required technical (Computer Science) ex-
pertise, along with justifications for their classification. These binaries were filtered for receiving mostly printable input, but some of them
(marked with *) decoded that into raw binary input, making them suboptimal for human interaction. Others (marked with +) received their
inputs in protocols which were automatically translated by HaCRS’ interaction assistance layer to be easily human-interactive. We expect
humans to do best on binaries with a high semantic complexity, and unskilled humans to do best with binaries requiring a low technical
expertise.

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

362

	Abstract
	1 Introduction
	2 Background
	2.1 Fully Automated Analysis
	2.2 Human-based Computation
	2.3 Human-Driven Automated Analysis
	2.4 Human-Assisted Automated Analysis

	3 Overview
	4 The Cyber Reasoning System
	4.1 Program Analysis Targets
	4.2 Organization Agents
	4.3 Selection Agents
	4.4 Innovation Agents
	4.5 Automated Vulnerability Discovery - Fuzzing
	4.6 Automated Vulnerability Discovery - Drilling

	5 Human Assistance
	5.1 Assistant Expertise
	5.2 Human-assisted Input Generation
	5.3 Automation-assisted Human Assistance
	5.4 Human-Automation Link

	6 Evaluation
	6.1 Dataset
	6.2 Human Assistants
	6.3 Human-Automation Link
	6.4 Comparative Evaluation
	6.5 Case Studies

	7 Discussion
	7.1 Human Obsolescence
	7.2 Assistant Skill Levels
	7.3 Incentive Structures
	7.4 Other Tasklets

	8 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 TrimAndShift

 Range: From page 16 to page 16
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 10.80 points
 Normalise (advanced option): 'original'

 32

 D:20170908100526
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Up
 10.8000
 0.0000

 Both
 16
 SubDoc
 16

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 15
 16
 15
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 16 to page 16
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 10.80 points
 Normalise (advanced option): 'original'

 32

 D:20170908100526
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Up
 10.8000
 0.0000

 Both
 16
 SubDoc
 16

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 15
 16
 15
 1

 1

 HistoryList_V1
 qi2base

